scholarly journals Dr. Josef Steiner Cancer Research Prize Lecture: The role of physiological cell death in neoplastic transformation and in anti-cancer therapy

Author(s):  
Andreas Strasser
Author(s):  
Shiv Shanker Pandey ◽  
Vivek Ambastha ◽  
Budhi Sagar Tiwari

Cancer is currently the second biggest cause of death in the Western world. Cancer cells escape the normal process of programmed cell death i.e., fail to die on schedule. The ability of cancer cells to avoid programmed cell death and continue to proliferate is one of the fundamental hallmarks of cancer and is a major target of cancer therapy development. Universities and research institutes are playing a major role in progress of cancer research. The aim of this study is to attract graduates of different disciplines towards cancer research and bring together researchers from different disciplines with an interest in the role of programmed cell death in cancer therapy and exploitation of programmed cell death research for therapeutic targeting of cancer. In spite of this, it is of broad interest to make a bridge or to start collaborations in between basic researchers and medical oncologists as well as for pharmaceutical companies i.e., aim of this study is to bridging the gap between knowledge and its action or application.


2020 ◽  
Vol 21 (15) ◽  
pp. 5583
Author(s):  
Manikandan Muthu ◽  
Sechul Chun ◽  
Judy Gopal ◽  
Gyun-Seok Park ◽  
Arti Nile ◽  
...  

Despite multitudes of reports on cancer remedies available, we are far from being able to declare that we have arrived at that defining anti-cancer therapy. In recent decades, researchers have been looking into the possibility of enhancing cell death-related signaling pathways in cancer cells using pro-apoptotic proteins. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and Mu-2/AP1M2 domain containing, death-inducing (MUDENG, MuD) have been established for their ability to bring about cell death specifically in cancer cells. Targeted cell death is a very attractive term when it comes to cancer, since most therapies also affect normal cells. In this direction TRAIL has made noteworthy progress. This review briefly sums up what has been done using TRAIL in cancer therapeutics. The importance of MuD and what has been achieved thus far through MuD and the need to widen and concentrate on applicational aspects of MuD has been highlighted. This has been suggested as the future perspective of MuD towards prospective progress in cancer research.


2021 ◽  
pp. 107815522199431
Author(s):  
Jennifer P Booth ◽  
Julie M Kennerly-Shah ◽  
Amber D Hartman

Introduction To describe pharmacist interventions as a result of an independent double check during cognitive order verification of outpatient parenteral anti-cancer therapy. Methods A single-center, retrospective analysis of all individual orders for outpatient, parenteral anti-cancer agents within a hematology/oncology infusion center during a 30 day period was conducted. The primary endpoint was error identification rates during first and second verification. Secondary endpoints included the type, frequency, and severity of errors identified during second verification using a modified National Coordinating Council for Medication Error Reporting and Prevention Index. Results A total of 1970 anti-cancer parenteral orders were screened, from which 1645 received an independent double check and were included. The number of errors identified during first and second verification were 30 (1.8%) and 10 (0.6%) respectively; second verification resulted in a 33.3% increase in corrected errors. The 10 errors identified during second verification included: four rate transcriptions to optimize pump interoperability, three rate and/or volume modifications, two dosage adjustments, and one treatment deferral due to toxicity. The severity was classified as Category A for four (40%), Category C for three (30%), and Category D for three (30%) errors. This correlated to a low capacity for harm for seven (70%) and a serious capacity for three (30%) errors. Conclusions Second verification of outpatient, parenteral anti-cancer medication orders resulted in a 33.3% increase in corrected errors. Three errors detected during second verification were determined to have a serious capacity for harm, supporting the value of independent double checks during pharmacist cognitive order verification.


2021 ◽  
Author(s):  
Marlena Brzozowa-Zasada

Summary Background It is generally accepted that angiogenesis is a complex and tightly regulated process characterized by the growth of blood vessels from existing vasculature. Activation of the Notch signalling pathway affects multiple aspects of vascular development. One of the components of the Notch signalling pathway, Delta-like ligand 4 (DLL4), has recently appeared as a critical regulator of tumour angiogenesis and thus as a promising therapeutic target. Methods This review article includes available data from peer-reviewed publications associated with the role of DLL4 in cancer angiogenesis. Searches were performed in PubMed, EMBASE, Google Scholar and Web of Science using the terms “tumour angiogenesis”, “DLL4”, “Notch signalling” and “anti-cancer therapy”. Results The survival curves of cancer patients revealed that the patients with high DLL4 expression levels had significantly shorter survival times than the patients with low DLL4 expression. Moreover, a positive correlation was also identified between DLL4 and VEGF receptorsʼ expression levels. It seems that inhibition of DLL4 may exert potent growth inhibitory effects on some tumours resistant to anti-VEGF therapies. A great number of blocking agents of DLL4/Notch signalling including anti-DLL4 antibodies, DNA vaccination, Notch antibodies and gamma-secretase inhibitors have been studied in preclinical tumour models. Conclusion DLL4 seems to be a promising target in anti-cancer therapy. Nevertheless, the careful evaluation of adverse effects on normal physiological processes in relation to therapeutic doses of anti-DLL4 drugs will be significant for advancement of DLL4 blocking agents in clinical oncology.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1138
Author(s):  
Zhe Zhang ◽  
Jiayan Shi ◽  
Edouard C. Nice ◽  
Canhua Huang ◽  
Zheng Shi

Flavonoids are considered as pleiotropic, safe, and readily obtainable molecules. A large number of recent studies have proposed that flavonoids have potential in the treatment of tumors by the modulation of autophagy. In many cases, flavonoids suppress cancer by stimulating excessive autophagy or impairing autophagy flux especially in apoptosis-resistant cancer cells. However, the anti-cancer activity of flavonoids may be attenuated due to the simultaneous induction of protective autophagy. Notably, flavonoids-triggered protective autophagy is becoming a trend for preventing cancer in the clinical setting or for protecting patients from conventional therapeutic side effects in normal tissues. In this review, focusing on the underlying autophagic mechanisms of flavonoids, we hope to provide a new perspective for clinical application of flavonoids in cancer therapy. In addition, we highlight new research ideas for the development of new dosage forms of flavonoids to improve their various pharmacological effects, establishing flavonoids as ideal candidates for cancer prevention and therapy in the clinic.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Sipeng Zuo ◽  
Jie Yu ◽  
Hui Pan ◽  
Linna Lu

Abstract Ferroptosis belongs to a novel form of regulated cell death. It is characterized by iron dependence, destruction of intracellular redox balance and non-apoptosis. And cellular structure and molecules level changes also occur abnormally during ferroptosis. It has been proved that ferroptosis exist widespreadly in many diseases, such as heart disease, brain damage or alzheimer disease. At the same time, the role of ferroptosis in cancer cannot be underestimated. More and more indications have told that ferroptosis is becoming a powerful weapon against cancer. In addition, therapies rely on ferroptosis have been applied to the clinic. Therefore, it is necessary to understand this newly discovered form of cell death and its connection with cancer. This review summarizes the mechanism of ferroptosis, ferroptosis inducers based on different targets and inspection methods. At last, we analyzed the relationship between ferroptosis and malignancies, in order to provide a novel theory basis for cancer treatment.


2017 ◽  
Vol 280 (1) ◽  
pp. 207-219 ◽  
Author(s):  
Olga Krysko ◽  
Tania Løve Aaes ◽  
Valerian E. Kagan ◽  
Katharina D'Herde ◽  
Claus Bachert ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2330
Author(s):  
Charlotta Bengtson ◽  
Annemie Bogaerts

Cold atmospheric plasma (CAP) is a promising new agent for (selective) cancer treatment, but the underlying cause of the anti-cancer effect of CAP is not well understood yet. Among different theories and observations, one theory in particular has been postulated in great detail and consists of a very complex network of reactions that are claimed to account for the anti-cancer effect of CAP. Here, the key concept is a reactivation of two specific apoptotic cell signaling pathways through catalase inactivation caused by CAP. Thus, it is postulated that the anti-cancer effect of CAP is due to its ability to inactivate catalase, either directly or indirectly. A theoretical investigation of the proposed theory, especially the role of catalase inactivation, can contribute to the understanding of the underlying cause of the anti-cancer effect of CAP. In the present study, we develop a mathematical model to analyze the proposed catalase-dependent anti-cancer effect of CAP. Our results show that a catalase-dependent reactivation of the two apoptotic pathways of interest is unlikely to contribute to the observed anti-cancer effect of CAP. Thus, we believe that other theories of the underlying cause should be considered and evaluated to gain knowledge about the principles of CAP-induced cancer cell death.


Sign in / Sign up

Export Citation Format

Share Document